

The Use of Advanced Instrumental Techniques to Address Emerging and Unique Circumstance Contaminants

Charles Neslund, Scientific Officer, Eurofins Lancaster Laboratories Environmental, LLC National Environmental Monitoring Conference, New Orleans, LA August 6-10, 2018

Providing comprehensive scientific resources to environmental clients worldwide.

Endothall

- Widely used herbicide for control of aquatic weeds and algae
- Also used with sugar beets, hops, cotton and alfalfa.
- EPA has MCL of 100 ug/l in drinking water
- EPA Method 548.1 used for analysis in water

Endothall

EPA Method 548.1

- Extract 100 mls of water with ion exchange SPE
- Derivatize with acidic methanol
- Analyze by GC/MS
- Method MDLs listed around 2 ug/l

Endothall

- Client needed soil samples analyzed in addition to waters
- No proven methodology for soil
- Dicarboxylic acid functionality looked suitable for LC/MS/MS approach
- Extract from soil? Optimally use water...maybe ion pairing reagent

LOQ Level Standard for Endothall – 50 ng/g in soil 10 ng/ml in solution

Calibration Curve for Endothall – 50 ng/g to 2500 ng/g in soil

Recoveries of 70-130

LOQ = 50 ng/g

MDL = 25 ng/g

Glycols

Ethylene Glycol

Propylene Glycol

2-methoxy ethanol

<u>Diethylene</u> <u>Glycol</u>

Triethylene Glycol

Tetraethylene Glycol

Glycols

- Group of compounds is very water soluble which makes extraction and concentration difficult
- Typical approach has been to use a GC/FID method like SW-846 8015, with direct aqueous injection (DAI)
- Sample matrix can have significant impact on what is detected (false positives)
- Sensitivity not spectacular, 5-10 mg/l common, optimized systems may do a little better

Glycols

- What about application of LC/MS/MS?
- Well suited for DAI, better selectivity and sensitivity?
- Concern about small size of molecules, particularly ethylene and propylene glycol
- How effectively would they ionize?

Glycols

Resolution – split the analysis into two analytical runs

- a. Selected Ion Reaction (SIR)
- b. Multiple Reaction Monitoring (MRM)

8.00

F1:SIR of 8 channels, ES+

10.00

76.95> 76.95

9.888e+004

8 00

Ethylene Glycol

5.11

49659.13

4.97e4

6 DD

F1:SIR of 8 channels.ES+

10.00

63.07>63.07

2.974e+005

Ethylene Glycol – 500 ug/l Propylene Glycol – 100 ug/l

2-methoxyethanol - 100 ug/l

Diethylene glycol – 25 ug/l

100-

6.00

Glycols

Diethylene glycol – 25 ug/l
Triethylene glycol – 25 ug/l
Tetraethylene glycol – 25 ug/l

Diethylene glycol can be reported from either mode Note use of a surrogate, tetramethylene glycol Limit for tetraethylene glycol improves

Phenyl Urea Herbicides

Diuron

Fenuron

Monuron

Phenyl Urea Herbicides

- Used for pre- and postemergent control of broadleaf and grassy weeds
- Also used on fruit and nut crops, grains, cotton, corn, etc.
- Analysis of compounds referenced in SW-846, Method 8321B
- Use of a generalized extraction resulted in sub-ppm limits
- Desire to optimize for low level detection

Phenyl Urea Herbicides

Fenuron – 1 ng/ml

Monuron – 1 ng/ml

Phenyl Urea Herbicides

Diuron – 1.5 ng/ml Buturon – 1.5 ng/ml

Phenyl Urea Herbicides

- 5 grams of soil blended with water and acetonitrile
- Extract cleaned up on SPE column
- Able to report low limits for analysis

LOQ

Monuron - 0.2 ng/g

Fenuron - 0.2 ng/g

Diuron - 0.3 ng/g

Piperonyl Butoxide

- Used as a synergist in pesticide formulations
- Enhances the potency of pesticide compounds like pyrethrins, pyrethroids and certain carbamates
- Used in over 1500 EPA registered products
- Home use and restaurants a significant consumer of products employing piperonyl butoxide

Piperonyl Butoxide

- Client with project to assess residual levels in WWTP sludges and biosolids
- Treatment of processes to degrade PBO, so need for low level analysis
- Extraction and <u>clean-up</u> of sludge extracts a challenge to meet low limits
- Take advantage of selectivity and sensitivity of GC/MS/MS to reach goals

Piperonyl Butoxide

LOQ Level Standard at 0.5 ng/ml

Piperonyl Butoxide

Calibration Curve - 0.5 ng/ml to 100 ng/ml

Piperonyl Butoxide

- Matrix present with the higher solids content presents problem
- Greater sensitivity and selectivity of GC/MS/MS allowed us to
 - a. Use less sample for extraction (liq/liq extraction)
 - b. Avoid use of column clean-ups that ultimately may have reduced recoveries.
- Under this scenario, still able to detect to 25 ng/l

Piperonyl Butoxide

Full Scan Chromatogram vs SRM Chromatogram of Matrix

Conclusions

- While not exactly mainstream yet, the analytical techniques of LC/MS/MS and GC/MS/MS hold great promise
- Superior selectivity and sensitivity enable reporting in difficult matrices at lower levels
- Better sensitivity allows reduction in sample amounts and reduction in sample processing techniques
- Useful tools to consider for application to compounds not already well defined by the more standard analytical methods

Acknowledgement

- Meng Yu (Eurofins Lancaster Laboratories Environmental)
- Tim Trees (Eurofins Lancaster Laboratories Environmental).

Thank you

Charles Neslund

charlesneslund@eurofinsus.com 717-799-0439

